On the linear automorphism group on a *-algebra (Categories, and Combinatorial Representation Theory Series) CCRT[7]

Joseph Ben Geloun
LIPN, Univ. Sorbonne Paris Nord

January 21, 2021

Outline

(1) Introduction
(2) $\mathcal{K}(n)$, the graph algebra
(3) Linear automorphism group on an *-algebra

- Structure constants, orbits and central elements
(4) The \mathcal{K}^{∞} algebra

Outline

(1) Introduction

(2) $\mathcal{K}(n)$, the graph algebra
(3) Linear automorphism group on an *-algebra

- Structure constants, orbits and central elements
(4) The \mathcal{K}^{∞} algebra

Goals

The semi-simple algebra $\mathcal{K}(n)$ of ribbon graphs is constructed from $\mathcal{A}=\mathbb{C}\left(S_{n}\right)^{\otimes 2}$, by "quotienting" it by the S_{n}-diagonal adjoint action on the tensor product;

- There are vectors T_{r} spanning the center of $\mathcal{K}(n)$ that have integral matrices.
- T_{r} are useful to identify the dimensions of the WA - matrix decomposition of $\mathcal{K}(n)$
- These dimensions are nothing but the square of Kronecker coeff.: they can be computed by a triangularization algorithm applied on the stack of matrices of the T_{r} 's [Ramgoolam \& BG [2010.04054]].

We may ask:

What is the most generic setting on semi-simple algebras for which this result generalizes?
(finding a 'nice' basis of the centre of an 'invariant' semi-simple sub-algebra of a given algebra)

Goals

The semi-simple algebra $\mathcal{K}(n)$ of ribbon graphs is constructed from $\mathcal{A}=\mathbb{C}\left(S_{n}\right)^{\otimes 2}$, by "quotienting" it by the S_{n}-diagonal adjoint action on the tensor product;

- There are vectors T_{r} spanning the center of $\mathcal{K}(n)$ that have integral matrices.
- T_{r} are useful to identify the dimensions of the WA - matrix decomposition of $\mathcal{K}(n)$
- These dimensions are nothing but the square of Kronecker coeff.: they can be computed by a triangularization algorithm applied on the stack of matrices of the Tr's [Ramgoolam \& BG [2010.04054]].

We may ask:
What is the most generic setting on semi-simple algebras for which this result generalizes?
(finding a 'nice' basis of the centre of an 'invariant' semi-simple sub-algebra of a given algebra)

Goals

The semi-simple algebra $\mathcal{K}(n)$ of ribbon graphs is constructed from $\mathcal{A}=\mathbb{C}\left(S_{n}\right)^{\otimes 2}$, by "quotienting" it by the S_{n}-diagonal adjoint action on the tensor product;

- There are vectors T_{r} spanning the center of $\mathcal{K}(n)$ that have integral matrices.
- T_{r} are useful to identify the dimensions of the WA - matrix decomposition of $\mathcal{K}(n)$
- These dimensions are nothing but the square of Kronecker coeff.: they can be computed by a triangularization algorithm applied on the stack of matrices of the T_{r} 's [Ramgoolam \& BG [2010.04054]]

We may ask:
What is the most generic setting on semi-simple algebras for which this result generalizes?
(finding a 'nice' basis of the centre of an 'invariant' semi-simple sub-algebra of a given algebra)

Goals

The semi-simple algebra $\mathcal{K}(n)$ of ribbon graphs is constructed from $\mathcal{A}=\mathbb{C}\left(S_{n}\right)^{\otimes 2}$, by "quotienting" it by the S_{n}-diagonal adjoint action on the tensor product;

- There are vectors T_{r} spanning the center of $\mathcal{K}(n)$ that have integral matrices.
- T_{r} are useful to identify the dimensions of the WA - matrix decomposition of $\mathcal{K}(n)$
- These dimensions are nothing but the square of Kronecker coeff.: they can be computed by a triangularization algorithm applied on the stack of matrices of the T_{r} 's [Ramgoolam \& BG [2010.04054]].

> We may ask:

What is the most generic setting on semi-simple algebras for which this result generalizes?
(finding a 'nice' basis of the centre of an 'invariant' semi-simple sub-algebra of a given algebra)

Outline

(1) Introduction

(2) $\mathcal{K}(n)$, the graph algebra
(3) Linear automorphism group on an *-algebra

- Structure constants, orbits and central elements
(4) The \mathcal{K}^{∞} algebra

$\mathcal{K}(n)$, the graph algebra

- Group algebra $\mathbb{C}\left(S_{n}\right)$, i.e. an element of which writes $a=\sum_{\sigma \in S_{n}} \lambda_{\sigma} \sigma, \lambda_{\sigma} \in \mathbb{C}$ - Back to coset formulation: Consider the orbits

$$
\left(\sigma_{1}, \sigma_{2}\right) \sim\left(\gamma \sigma_{1} \gamma^{-1}, \gamma \sigma_{2} \gamma^{-1}\right)
$$

- Define $\mathcal{K}(n) \subset \mathbb{C}\left(S_{n}\right)^{\otimes 2}$ is the vector space over \mathbb{C}

$\mathcal{K}(n)$, the graph algebra
- Group algebra $\mathbb{C}\left(S_{n}\right)$, i.e. an element of which writes $a=\sum_{\sigma \in S_{n}} \lambda_{\sigma} \sigma, \lambda_{\sigma} \in \mathbb{C}$
- Back to coset formulation: Consider the orbits

$$
\begin{equation*}
\left(\sigma_{1}, \sigma_{2}\right) \sim\left(\gamma \sigma_{1} \gamma^{-1}, \gamma \sigma_{2} \gamma^{-1}\right) \tag{1}
\end{equation*}
$$

- Define $\mathcal{K}(n) \subset \mathbb{C}\left(S_{n}\right)^{\otimes 2}$ is the vector space over \mathbb{C}

$\mathcal{K}(n)$, the graph algebra
- Group algebra $\mathbb{C}\left(S_{n}\right)$, i.e. an element of which writes $a=\sum_{\sigma \in S_{n}} \lambda_{\sigma} \sigma, \lambda_{\sigma} \in \mathbb{C}$
- Back to coset formulation: Consider the orbits

$$
\begin{equation*}
\left(\sigma_{1}, \sigma_{2}\right) \sim\left(\gamma \sigma_{1} \gamma^{-1}, \gamma \sigma_{2} \gamma^{-1}\right) \tag{1}
\end{equation*}
$$

- Define $\mathcal{K}(n) \subset \mathbb{C}\left(S_{n}\right)^{\otimes 2}$ is the vector space over \mathbb{C}

$$
\begin{equation*}
\mathcal{K}(n)=\operatorname{Span}_{\mathbb{C}}\left\{\sum_{\gamma \in S_{n}} \gamma \sigma_{1} \gamma^{-1} \otimes \gamma \sigma_{2} \gamma^{-1}, \sigma_{1}, \sigma_{2}, \in S_{n}\right\} \tag{2}
\end{equation*}
$$

\rightarrow Fact: an orbit $\operatorname{Orb}(r)$ is 1-1 correspondence with a base vector E_{r} of $\mathcal{K}(n)$.
$\mathcal{K}(n)$, the graph algebra

- Take a base element of $\mathcal{K}(n)$

$$
\begin{equation*}
A_{\sigma_{1}, \sigma_{2}}=\sum_{\gamma \in S_{n}} \gamma \sigma_{1} \gamma^{-1} \otimes \gamma \sigma_{2} \gamma^{-1} \tag{3}
\end{equation*}
$$

- Associative multiplication

$$
\begin{equation*}
A_{\sigma_{1}, \sigma_{2}} A_{\sigma_{3}, \sigma_{4}}=\text { coeff. } \sum_{\tau \in S_{n}} A_{\sigma_{1} \tau \sigma_{3} \tau^{-1}, \sigma_{2} \tau \sigma_{4} \tau^{-1}} \tag{4}
\end{equation*}
$$

- There is a pairing

$$
\begin{equation*}
\boldsymbol{\delta}_{2}\left(\otimes_{i=1}^{2} \sigma_{i} ; \otimes_{i=1}^{2} \sigma_{i}^{\prime}\right)=\prod_{i=1}^{2} \delta\left(\sigma_{i} \sigma_{i}^{\prime-1}\right) \tag{5}
\end{equation*}
$$

that extends by linearity to $\mathcal{K}(n)$ and that is non-degenerate.
Theorem (BG, Ramgoolam '17)
$\mathcal{K}(n)$ is an associative semi-simple algebra with unit element.

Outline

(1) Introduction

(2) $\mathcal{K}(n)$, the graph algebra
(3) Linear automorphism group on an *-algebra

- Structure constants, orbits and central elements
(4) The \mathcal{K}^{∞} algebra

*-Algebra and states

Consider \mathcal{A} an associative algebra with unit over the complex field \mathbb{C}, its neutral element will be noted e.

- We call involution within \mathcal{A}, a bijection $x \rightarrow x^{*}$ which is additive, semi-linear and an involutive anti-automorphism. The pair $(\mathcal{A}, *)$ is called star-Algebra.
- $\mathcal{C}_{+}(\mathcal{A})$ is the set of elements of the form $\sum_{i \in F} x_{i} x_{i}^{*}$ (where F finite). It is a real convex cone within $\operatorname{SA}(\mathcal{A})$ (set of self-adjoint elements, i.e. such that $x=x^{*}$).
- State (\mathcal{A}) is the set of linear forms $f \in \mathcal{A}^{*}$, the dual of \mathcal{A}, such that

$$
\begin{equation*}
z \in \mathcal{C}_{+}(\mathcal{A}) \Longrightarrow f(z) \geq 0 \quad \text { and } \quad f(1)=1 \tag{6}
\end{equation*}
$$

where 1 is the constant function on \mathcal{A}.

- A semi-positive non degenerate state (SPS) $f \in \operatorname{State}(\mathcal{A})$ satisfies

$$
\begin{equation*}
z \in \mathbb{C}_{+}(\mathcal{A}) \text { and } f(z)=0 \Longrightarrow z=0 \tag{7}
\end{equation*}
$$

We also call a SPS, a faithful state.

\mathcal{A} an $*$-algebra and Hilbert space

Notable facts:
(1) We start with a finite dimensional $*$-algebra \mathcal{A} and remark that e^{*} is neutral so that $e^{*}=e$.
(2) Now, \mathcal{A} is equipped with a $\operatorname{SPS} \varphi$ as in (7). With φ, we build the following 2 -form

$$
\begin{equation*}
g(x, y)=\langle x \mid y\rangle=\varphi\left(x^{*} y\right) \tag{8}
\end{equation*}
$$

which satisfies

$$
\begin{equation*}
\langle a x \mid y\rangle=\left\langle x \mid a^{*} y\right\rangle \tag{9}
\end{equation*}
$$

(0) One checks (see below) at once that $(x, y) \rightarrow\langle x \mid y\rangle$ a positive definite hermitian form (inner product) therefore $(\underline{\mathcal{A}, g})$ is an Hilbert space. We have $|\langle x \mid y\rangle| \leq\|x\|| | y \|$ and $\varphi\left(x^{*}\right)=\overline{\varphi(x)}$.

- This inner product satisfies identically $\varphi\left(x^{*}(a . y)\right)=\langle x \mid a . y\rangle=\left\langle a^{*} \cdot x \mid y\right\rangle=\varphi\left(\left(a^{*} \cdot x\right)^{*} y\right)$ and from that, we get that \mathcal{A} is semi-simple.

Proofs

Proof of 2 and 3.- Linearity on the right is straightforward. To show hermitian symmetry, we first compute $g(x+y, x+y)=g(x, x)+[g(x, y)+g(y, x)]+g(y, y)$ which proves that

$$
\begin{equation*}
\Im(g(y, x))=-\Im(g(x, y)) . \tag{10}
\end{equation*}
$$

Then, from,

$$
\begin{align*}
& g(x+i y, x+i y)=g(x, x)+[g(x, i y)+g(i y, x)]+g(i y, i y)= \\
& g(x, x)+i[g(x, y)-g(y, x)]+g(y, y) \tag{11}
\end{align*}
$$

we get $i[g(x, y)-g(y, x)] \in \mathbb{R}$ meaning $\Re([g(x, y)-g(y, x)])=0$. Then $\Re(g(y, x))=\Re(g(x, y))$ with (10) shows

$$
\begin{equation*}
g(y, x)=\overline{g(x, y)} \tag{12}
\end{equation*}
$$

therefore, with $y=e$, we get $\varphi\left(x^{*}\right)=g(x, e)=\overline{g(e, x)}=\overline{\varphi(x)}$. The inequality $|g(x, y)| \leq\|x\| .\|y\|$ is a consequence of Cauchy-Schwartz theorem.

Linear automorphism group on \mathcal{A}

- Consider a finite group $H \subset \operatorname{Aut}_{\mathbb{C}}(\mathcal{A})$ of linear automorphisms of the $*$-algebra \mathcal{A} i.e. automorphisms of algebra which commute with the $*$-involution

$$
\begin{align*}
& \forall(h, a) \in H \times \mathcal{A}, \quad h .(a+b)=h . a+h . b \\
& \forall(h, a, b) \in H \times \mathcal{A} \times \mathcal{A}, \quad h .(a b)=(h . a)(h . b) \\
& \forall(h, a, \lambda) \in H \times \mathcal{A} \times \mathbb{C}, \quad h .(\lambda a)=\lambda h . a \\
& \forall(h, a) \in H \times \mathcal{A}, \quad(h . a)^{*}=h . a^{*} \tag{13}
\end{align*}
$$

- φ is called H-invariant if

$$
\begin{equation*}
\forall(h, a) \in H \times \mathcal{A}, \quad \varphi(h . a)=\varphi(a) \tag{14}
\end{equation*}
$$

In other words, φ does not see the action of H.

Linear automorphism group on \mathcal{A}

Let φ be a H-invariant SPS on \mathcal{A} a $*$-algebra
(1) H is a group of isometries for $g(x, y)=\langle x \mid y\rangle$:

$$
\begin{align*}
\langle h \cdot a \mid h \cdot b\rangle & =\varphi\left((h \cdot a)^{*} h \cdot b\right)=\varphi\left(\left(h \cdot a^{*}\right)(h \cdot b)\right)=\varphi\left(h \cdot\left(a^{*} \cdot b\right)\right) \\
& =\varphi\left(a^{*} \cdot b\right)=\langle a \mid b\rangle \tag{15}
\end{align*}
$$

(2) Consider the elements H.a $:=\sum_{h \in H}$ h.a. Form the vector space $\kappa(H, \mathcal{A})$ made of orbits (with multiplicities) linearly generated by the vectors H.a, for all $a \in \mathcal{A}$:

$$
\begin{equation*}
\kappa(H, \mathcal{A})=\operatorname{Span}_{\mathbb{C}}\{H . a\}_{a \in A} \tag{16}
\end{equation*}
$$

then $\kappa(H, \mathcal{A})$ is a subalgebra of \mathcal{A} which is, moreover $*$-closed.

If $\mathcal{A}=\mathbb{C}\left(S_{n}\right)^{\otimes d}, \kappa(H, \mathcal{A})=\mathcal{K}(n)$ the algebra of ribbon graphs, for a particular φ and H (will prove this in the next section).
$\kappa(H, \mathcal{A})$ is an $*$-algebra

Proof of 2.- We check that the product of vectors stays in $\kappa(H, \mathcal{A})$

$$
\begin{align*}
& (H \cdot a)(H \cdot b)=\sum_{h, g \in H}(h \cdot a)(g \cdot b)=\sum_{h, g \in H} h \cdot\left((a)\left(h^{-1} g \cdot b\right)\right) \\
& =\sum_{w=h^{-1} g} \quad \sum_{h \in H} h \cdot\left(\sum_{w \in H} a(w \cdot b)\right)=\sum_{w \in H} H \cdot(a(w \cdot b)) \tag{17}
\end{align*}
$$

Moreover, h.a* $=(\text { h.a) })^{*}$ implies $(H . a)^{*}=H . a^{*}$, so $\kappa(H, \mathcal{A})$ is $*$-closed.

What if $\mathcal{A} C^{*}$-algebra?

Remark.- (i) The reader should be aware that (\mathcal{A}, g) is not necessarily a C^{*}-algebra ${ }^{1}$. In fact, one has the following equivalent conditions:

- (\mathcal{A}, g) is a C^{*}-algebra (i.e. for $\left.\|x\|=\sqrt{g(x, x)}\right)$
- $\operatorname{dim}_{\mathbb{C}}(\mathcal{A})=1$

Elementary proof of (i).- A finite dimensional C^{*}-algebra \mathcal{A} is a (finite) direct sum of blocks which are \mathbb{C}-algebras of matrices i.e.

$$
\begin{equation*}
\mathcal{A}=\oplus_{i=1}^{m} \mathcal{M}\left(n_{i}, \mathbb{C}\right) \tag{18}
\end{equation*}
$$

(see, e.g. [?] Theorem III.1.1). The block, being simple algebras, are therefore two-sided ideals. Hence, decomposing $1_{\mathcal{A}}$ according to (18) yields

$$
\begin{equation*}
1_{\mathcal{A}}=\sum_{i=1}^{m} e_{i} \tag{19}
\end{equation*}
$$

if we had $m>1$, this would entail that e_{1} and $e_{2}^{\prime}=\sum_{i=2}^{m} e_{i}$ be two non-zero orthogonal projectors (orthogonality is proved by means of (9)). Hence, from $\left\|e_{1}\right\|=\left\|e_{1}+e_{2}^{\prime}\right\|=\left\|e_{1}-e_{2}^{\prime}\right\|=1$ we see that $m=1$ and $n_{1}=1$.

[^0]
What if $\mathcal{A} C^{*}$-algebra?

(ii) However, we can make \mathcal{A} a C^{*}-algebra for the sup norm $\|a\|_{g}=\sup _{\|\xi\|=1}\|a . \xi\|$.

- If \mathcal{A} is a C^{*}-algebra then $\kappa(H, \mathcal{A})$ is a C^{*}-algebra.

Proof: This is the consequence of the general fact that an *-closed subalgebra of a C^{*}-algebra is a C^{*}-algebra. [Bourbaki Ch 8]

Structure constants, Orbits

- Any basis vector of $\kappa(H, \mathcal{A})$ expands as

$$
\begin{equation*}
H . a:=\sum_{h \in H} h . a=|\operatorname{Aut}(a)| \sum_{a^{\prime} \in \operatorname{Orb}(a)} a^{\prime} \tag{20}
\end{equation*}
$$

where $\operatorname{Aut}(a)=\{h \mid h . a=a\} \subset H$ is the automorphism subgroup of H that leaves a invariant.

- Orbit-stablizer theorem, we know that $|\operatorname{Aut}(a)|=|H| /|\operatorname{Orb}(a)|$. Also $\forall b \in \operatorname{Orb}(a)$, $\operatorname{Aut}(a) \equiv \operatorname{Aut}(b)$, thus $|\operatorname{Aut}(a)|$ is independent of the representative element in the orbit.

Structure constants. We introduce the following elements:

$$
\begin{equation*}
E_{a}=\frac{1}{|H|} \sum_{h \in H} h \cdot a=\frac{1}{|\operatorname{Orb}(a)|} \sum_{a^{\prime} \in \operatorname{Orb}(a)} a^{\prime} \tag{21}
\end{equation*}
$$

and inspect the structure constants

$$
\begin{equation*}
E_{a} E_{b}=\sum_{c} C_{a b}^{c} E_{c} \tag{22}
\end{equation*}
$$

We want a expansion of $C_{a b}^{c}$ in terms of orbits of the group action.

Structure constants and central elements

$$
\begin{align*}
& E_{a} E_{b}=\frac{1}{|H|^{2}} \sum_{g \in H} \sum_{h \in H}(g \cdot a)(h \cdot b)=\frac{1}{|H|^{2}} \sum_{g \in H} \sum_{h \in H} g \cdot\left(a\left(g^{-1} h \cdot b\right)\right) \\
& =\frac{1}{|H|^{2}} \sum_{g \in H} \sum_{h \in H} g \cdot(a(h \cdot b)) \quad\left(g^{-1} h \rightarrow h\right) \\
& =\frac{1}{|\operatorname{Orb}(b)|} \frac{1}{|H|} \sum_{b^{\prime} \in \operatorname{Orb}(b)} \frac{|H|}{\left|\operatorname{Orb}\left(a \cdot b^{\prime}\right)\right|} \sum_{d \in \operatorname{Orb}\left(a \cdot b^{\prime}\right)} d \\
& =\frac{1}{|\operatorname{Orb}(b)|} \sum_{b^{\prime} \in \operatorname{Orb}(b)} \sum_{c} \frac{1}{\left|\operatorname{Orb}\left(a \cdot b^{\prime}\right)\right|} \delta\left(\operatorname{Orb}(c), \operatorname{Orb}\left(a \cdot b^{\prime}\right)\right) \sum_{d \in \operatorname{Orb}\left(a \cdot b^{\prime}\right)} d \\
& =\frac{1}{|\operatorname{Orb}(b)|} \sum_{c} \frac{1}{|\operatorname{Orb}(c)|} \cdot \sum_{d \in \operatorname{Orb}(c)} d \sum_{b^{\prime} \in \operatorname{Orb}(b)} \delta\left(\operatorname{Orb}(c), \operatorname{Orb}\left(a \cdot b^{\prime}\right)\right) \\
& =\frac{1}{|\operatorname{Orb}(b)|} \sum_{c} E_{c}\left(\sum_{b^{\prime} \in \operatorname{Orb}(b)} \delta\left(\operatorname{Orb}(c), \operatorname{Orb}\left(a \cdot b^{\prime}\right)\right)\right) \tag{23}
\end{align*}
$$

where $\delta(\operatorname{Orb}(p), \operatorname{Orb}(q))$ is the Kronecker delta on orbits. Thus $C_{a b}^{c}=\frac{1}{|\operatorname{Orb}(b)|} \sum_{b^{\prime} \in \operatorname{Orb}(b)} \delta\left(\operatorname{Orb}(c), \operatorname{Orb}\left(a . b^{\prime}\right)\right)$ with

$$
\sum_{b^{\prime} \in \operatorname{Orb}(b)} \delta\left(\operatorname{Orb}(c), \operatorname{Orb}\left(a \cdot b^{\prime}\right)\right)=
$$

Number of times the right multiplication of elements in the orbit b with a fixed element in the orbit a (to the left) produces an element in orbit c.

Structure constants and central elements

There exist particular elements in \mathcal{A} such that

$$
\begin{equation*}
T_{a}=|\operatorname{Orb}(a)| E_{a} \tag{25}
\end{equation*}
$$

For these elements, we have

$$
\begin{equation*}
T_{a} E_{b}=|\operatorname{Orb}(a)| \sum_{c} C_{a b}^{c} E_{c}=\sum_{c}\left(\mathcal{M}_{a}\right)_{b}^{c} E_{c} \tag{26}
\end{equation*}
$$

The following statement is straightforward.

Proposition

Then, for any $a \in \kappa(H, \mathcal{A})$, the matrix elements $\left(\mathcal{M}_{a}\right)_{b}^{c}$ are non negative integers.

Question:
Are there some T_{a} that generate the center of $\kappa(H, \mathcal{A})$?

\mathcal{A} a group algebra

In the case that $\mathcal{A}=\mathbb{C}(\mathcal{G})$,
\rightarrow Consider \mathcal{G} a finite group, and $\mathcal{A}=\mathbb{C}(\mathcal{G})$ its group algebra.
\rightarrow Case of interest $\mathcal{A}=\mathbb{C}(G)^{\otimes d} \simeq \mathbb{C}\left(G^{\times d}\right)$ is an algebra. We write for simplicity $\mathcal{G}=G^{\times d}$.

- *-involution on \mathcal{A}

$$
\begin{equation*}
X^{*}=\sum_{g \in \mathcal{G}} \bar{a}_{g} g^{-1} \tag{27}
\end{equation*}
$$

- PSP $\varphi:$ Given $X=\sum_{g \in \mathcal{G}} a_{g} g \in \mathcal{A}, \varphi: \mathcal{A} \rightarrow \mathbb{C}$

$$
\begin{align*}
& \varphi(X):=a_{e}, \quad \text { pick the coeff of the identity } \\
& X^{*} X \in \mathcal{C}(\mathcal{A}), \quad \varphi\left(X^{*} X\right)=\sum_{g \in \mathcal{G}} \sum_{h \in \mathcal{G}} \bar{a}_{g} a_{h} \varphi\left(g^{-1} h\right) \tag{28}
\end{align*}
$$

pick all coefficients such that $\left[e=g^{-1} h\right] \Rightarrow(g=h)$. Thus $\varphi\left(X^{*} X\right)=\sum_{g=h}\left|a_{h}\right|^{2} \geq 0$.

- $(\mathcal{A}, *)$ is a $*$-algebra that is semi-simple. Semi-simpliciy feature is mainly the Maschke theorem (let G be a finite group and k a field whose characteristic does not divide the order of G. Then $k[G]$, the group algebra of G, is semisimple).
\mathcal{A} a group algebra
- δ is the Kronecker delta function on $\mathcal{G}(\delta(g)=1$ if and only if $g=e$, otherwise $\delta(g)=0)$.
- A sesquilinear form on \mathcal{A} as

$$
\begin{equation*}
\left\langle\sum_{g \in \mathcal{G}} a_{g} g, \sum_{h \in \mathcal{G}} a_{h} h\right\rangle=\sum_{g, h \in \mathcal{G}} \bar{a}_{g} a_{h} \delta\left(g^{-1} h\right) \tag{29}
\end{equation*}
$$

Proposition

For any $X, Y \in \mathcal{A}$,

$$
\begin{equation*}
\langle X, Y\rangle=\varphi\left(X^{*} Y\right) \tag{30}
\end{equation*}
$$

Proof : $\varphi(g)=\delta(g)$, for all $g \in \mathcal{G}$.

Linear automorphism group of \mathcal{A}

- H the subgroup of \mathcal{G}, defined by the adjoint action: $\forall(h, g) \in H \times \mathcal{G}$

$$
\begin{equation*}
g \mapsto \quad h g h^{-1} \tag{31}
\end{equation*}
$$

- The action of H on \mathcal{A} extends by linearity on \mathcal{A}

$$
\begin{equation*}
\text { h. } X=\sum_{g \in \mathcal{G}} a_{g} h g h^{-1} . \tag{32}
\end{equation*}
$$

- H commutes with the $*$-involution: $(h . X)^{*}=h X^{*}$.

Proposition

$\forall(h, X) \in H \times \mathcal{A}, \quad \varphi(h . X)=\varphi(X)$.
Proof: Consider a couple $(h, X) \in H \times \mathcal{A}$

$$
\begin{equation*}
\varphi(h . X)=\sum_{g \in \mathcal{G}} a_{g} \varphi\left(h g h^{-1}\right)=\sum_{g \in \mathcal{G} \mid \operatorname{lng} h^{-1}=e} a_{g}=a_{e}=\varphi(X) \tag{33}
\end{equation*}
$$

- H is an isometry group of \mathcal{A}.
- $\kappa(H, \mathcal{A})$ is a $*$-sublagebra of \mathcal{A}.
- The restriction $\left.\varphi\right|_{\kappa(H, \mathcal{A})}$ is a SPS for $\kappa(H, \mathcal{A})$ and thereby proves that $\kappa(H, \mathcal{A})$ is semi-simple.
- The inner product of \mathcal{A} should restrict on $\kappa(H, \mathcal{A})$

T_{a} operators

- Special base elements

$$
\begin{equation*}
T_{a}=\sum_{g \in \mathcal{C}_{a}} g \tag{34}
\end{equation*}
$$

where \mathcal{C}_{a} is a particular conjugacy class. The label ' a ' here is yet to be determine.

- A sufficient number of these elements generates the center of $\kappa(H, \mathcal{A})$.
- In the case: $G=S_{n}$:
$\rightarrow \mathcal{C}_{a}=$ conjugacy class with 1 cycle of size a and all remaining cycles of size 1 .
$n=3, \quad \mathcal{C}_{2}=\{(12)(3) ;(13)(2) ;(23)(1)\}$.
$\rightarrow T_{a}$'s commute with each other

$$
\begin{equation*}
T_{a} T_{b}=T_{b} T_{a} \tag{35}
\end{equation*}
$$

for a few number of $T_{a}^{\prime} \mathrm{s}, a=2,3, \ldots, n-1,\left\{T_{a}\right\}$ generates the center of $\mathbb{C}\left(S_{n}\right)$.

Outline

(1) Introduction

(2) $\mathcal{K}(n)$, the graph algebra
(3) Linear automorphism group on an *-algebra

- Structure constants, orbits and central elements
(4) The \mathcal{K}^{∞} algebra
\mathcal{K}^{∞} algebra
- An infinite dimensional associative algebra obtained by summing $\mathcal{K}(n)$ over n

$$
\begin{equation*}
\mathcal{K}^{\infty}=\bigoplus_{n=0}^{\infty} \mathcal{K}(n) \tag{36}
\end{equation*}
$$

- Two associative products on this vector space.
- The product at fixed $n: \mathcal{K}^{\infty}$ is an associative semi-simple algebra?
- Outer product on \mathcal{K}^{∞} :

$$
\begin{align*}
& E_{\left(\bar{\sigma}_{1}, \bar{\sigma}_{2}\right)}=\sum_{\gamma_{1} \in S_{n_{1}}} \gamma_{1} \sigma_{1} \gamma_{1}^{-1} \otimes \gamma_{1} \sigma_{2} \gamma_{1}^{-1} \in \mathcal{K}\left(n_{1}\right) \\
& E_{\left(\bar{\tau}_{1}, \bar{\tau}_{2}\right)}=\sum_{\gamma_{2} \in S_{n_{2}}} \gamma_{2} \tau_{1} \gamma_{2}^{-1} \otimes \gamma_{2} \tau_{2} \gamma_{2}^{-1} \in \mathcal{K}\left(n_{2}\right) \\
& \circ: \mathcal{K}\left(n_{1}\right) \otimes \mathcal{K}\left(n_{2}\right) \rightarrow \mathcal{K}\left(n_{1}+n_{2}\right) \tag{37}\\
& E_{\left(\bar{\sigma}_{1}, \bar{\sigma}_{2}\right)} \circ E_{\left(\bar{\tau}_{1}, \bar{\tau}_{2}\right)}=\sum_{\gamma \in S_{n_{1}+n_{2}}} \gamma\left(\bar{\sigma}_{1} \circ \bar{\tau}_{1}\right) \gamma^{-1} \otimes \gamma\left(\bar{\sigma}_{2} \circ \bar{\tau}_{2}\right) \gamma^{-1}=E_{\left(\bar{\sigma}_{1} \circ \bar{\tau}_{1}\right),\left(\bar{\sigma}_{2} \circ \bar{\tau}_{2}\right)}
\end{align*}
$$

This outer product is related to the ring structure which has been described in detail, using the representation basis in [de Mello Koch et al, arXiv:1707.01455 [hep-th]]. - More products, co-product and Hopf algebra structure?

[^0]: ${ }^{1}$ See discussion in https://math.stackexchange.com/questions/3964927.

