On the linear automorphism group on a *-algebra (Categories, and Combinatorial Representation Theory Series) CCRT[7]

Joseph Ben Geloun

LIPN, Univ. Sorbonne Paris Nord

January 21, 2021

Outline

1 Introduction

- 2 $\mathcal{K}(n)$, the graph algebra
- 3 Linear automorphism group on an *-algebra
 - Structure constants, orbits and central elements

(4) The \mathcal{K}^{∞} algebra

Outline

1 Introduction

- 2 $\mathcal{K}(n)$, the graph algebra
- Linear automorphism group on an *-algebra
 Structure constants, orbits and central elements

(4) The \mathcal{K}^{∞} algebra

The semi-simple algebra $\mathcal{K}(n)$ of ribbon graphs is constructed from $\mathcal{A} = \mathbb{C}(S_n)^{\otimes 2}$, by "quotienting" it by the S_n -diagonal adjoint action on the tensor product;

• There are vectors T_r spanning the center of $\mathcal{K}(n)$ that have integral matrices.

• T_r are useful to identify the dimensions of the WA - matrix decomposition of $\mathcal{K}(n)$

• These dimensions are nothing but the square of Kronecker coeff.: they can be computed by a triangularization algorithm applied on the stack of matrices of the T_r 's [Ramgoolam & BG [2010.04054]].

We may ask:

What is the most generic setting on semi-simple algebras for which this result generalizes?

(finding a 'nice' basis of the centre of an 'invariant' semi-simple sub-algebra of a given algebra)

The semi-simple algebra $\mathcal{K}(n)$ of ribbon graphs is constructed from $\mathcal{A} = \mathbb{C}(S_n)^{\otimes 2}$, by "quotienting" it by the S_n -diagonal adjoint action on the tensor product;

• There are vectors T_r spanning the center of $\mathcal{K}(n)$ that have integral matrices.

• T_r are useful to identify the dimensions of the WA - matrix decomposition of $\mathcal{K}(n)$

• These dimensions are nothing but the square of Kronecker coeff.: they can be computed by a triangularization algorithm applied on the stack of matrices of the T_r 's [Ramgoolam & BG [2010.04054]].

We may ask:

What is the most generic setting on semi-simple algebras for which this result generalizes?

(finding a 'nice' basis of the centre of an 'invariant' semi-simple sub-algebra of a given algebra)

The semi-simple algebra $\mathcal{K}(n)$ of ribbon graphs is constructed from $\mathcal{A} = \mathbb{C}(S_n)^{\otimes 2}$, by "quotienting" it by the S_n -diagonal adjoint action on the tensor product;

- There are vectors T_r spanning the center of $\mathcal{K}(n)$ that have integral matrices.
- T_r are useful to identify the dimensions of the WA matrix decomposition of $\mathcal{K}(n)$

• These dimensions are nothing but the square of Kronecker coeff.: they can be computed by a triangularization algorithm applied on the stack of matrices of the T_r 's [Ramgoolam & BG [2010.04054]].

We may ask:

What is the most generic setting on semi-simple algebras for which this result generalizes?

(finding a 'nice' basis of the centre of an 'invariant' semi-simple sub-algebra of a given algebra)

The semi-simple algebra $\mathcal{K}(n)$ of ribbon graphs is constructed from $\mathcal{A} = \mathbb{C}(S_n)^{\otimes 2}$, by "quotienting" it by the S_n -diagonal adjoint action on the tensor product;

- There are vectors T_r spanning the center of $\mathcal{K}(n)$ that have integral matrices.
- T_r are useful to identify the dimensions of the WA matrix decomposition of $\mathcal{K}(n)$
- These dimensions are nothing but the square of Kronecker coeff.: they can be computed by a triangularization algorithm applied on the stack of matrices of the T_r 's [Ramgoolam & BG [2010.04054]].

We may ask:

What is the most generic setting on semi-simple algebras for which this result generalizes?

(finding a 'nice' basis of the centre of an 'invariant' semi-simple sub-algebra of a given algebra)

Outline

Introduction

2 $\mathcal{K}(n)$, the graph algebra

Linear automorphism group on an *-algebra
 Structure constants, orbits and central elements

(4) The \mathcal{K}^{∞} algebra

• Group algebra $\mathbb{C}(S_n)$, i.e. an element of which writes $a = \sum_{\sigma \in S_n} \lambda_{\sigma} \sigma$, $\lambda_{\sigma} \in \mathbb{C}$

• Back to coset formulation: Consider the orbits

$$(\sigma_1, \sigma_2) \sim (\gamma \sigma_1 \gamma^{-1}, \gamma \sigma_2 \gamma^{-1})$$
 (1)

• Define $\mathcal{K}(n) \subset \mathbb{C}(S_n)^{\otimes 2}$ is the vector space over \mathbb{C}

$$\mathcal{K}(n) = \operatorname{Span}_{\mathbb{C}} \left\{ \sum_{\gamma \in S_n} \gamma \sigma_1 \gamma^{-1} \otimes \gamma \sigma_2 \gamma^{-1}, \ \sigma_1, \sigma_2, \in S_n \right\}$$
(2)

 \rightarrow Fact : an orbit Orb(r) is 1-1 correspondence with a base vector E_r of $\mathcal{K}(n)$.

- Group algebra $\mathbb{C}(S_n)$, i.e. an element of which writes $a = \sum_{\sigma \in S_n} \lambda_{\sigma} \sigma$, $\lambda_{\sigma} \in \mathbb{C}$
- Back to coset formulation: Consider the orbits

$$(\sigma_1, \sigma_2) \sim (\gamma \sigma_1 \gamma^{-1}, \gamma \sigma_2 \gamma^{-1})$$
 (1)

• Define $\mathcal{K}(n) \subset \mathbb{C}(S_n)^{\otimes 2}$ is the vector space over \mathbb{C}

$$\mathcal{K}(n) = \operatorname{Span}_{\mathbb{C}} \left\{ \sum_{\gamma \in S_n} \gamma \sigma_1 \gamma^{-1} \otimes \gamma \sigma_2 \gamma^{-1}, \ \sigma_1, \sigma_2, \in S_n \right\}$$
(2)

 \rightarrow Fact : an orbit Orb(r) is 1-1 correspondence with a base vector E_r of $\mathcal{K}(n)$.

- Group algebra $\mathbb{C}(S_n)$, i.e. an element of which writes $a = \sum_{\sigma \in S_n} \lambda_{\sigma} \sigma$, $\lambda_{\sigma} \in \mathbb{C}$
- Back to coset formulation: Consider the orbits

$$(\sigma_1, \sigma_2) \sim (\gamma \sigma_1 \gamma^{-1}, \gamma \sigma_2 \gamma^{-1})$$
 (1)

• Define $\mathcal{K}(n) \subset \mathbb{C}(S_n)^{\otimes 2}$ is the vector space over \mathbb{C}

$$\mathcal{K}(n) = \operatorname{Span}_{\mathbb{C}} \left\{ \sum_{\gamma \in S_n} \gamma \sigma_1 \gamma^{-1} \otimes \gamma \sigma_2 \gamma^{-1}, \ \sigma_1, \sigma_2, \in S_n \right\}$$
(2)

 \rightarrow Fact : an orbit Orb(r) is 1-1 correspondence with a base vector E_r of $\mathcal{K}(n)$.

• Take a base element of $\mathcal{K}(n)$

$$A_{\sigma_1,\sigma_2} = \sum_{\gamma \in S_n} \gamma \sigma_1 \gamma^{-1} \otimes \gamma \sigma_2 \gamma^{-1}$$
(3)

• Associative multiplication

$$A_{\sigma_1,\sigma_2}A_{\sigma_3,\sigma_4} = coeff. \sum_{\tau \in S_n} A_{\sigma_1 \tau \sigma_3 \tau^{-1}, \sigma_2 \tau \sigma_4 \tau^{-1}}$$
(4)

• There is a pairing

$$\boldsymbol{\delta}_{2}(\otimes_{i=1}^{2}\sigma_{i};\otimes_{i=1}^{2}\sigma_{i}')=\prod_{i=1}^{2}\delta(\sigma_{i}\sigma_{i}'^{-1})$$
(5)

that extends by linearity to $\mathcal{K}(n)$ and that is non-degenerate.

Theorem (BG, Ramgoolam '17)

 $\mathcal{K}(n)$ is an associative semi-simple algebra with unit element.

Outline

Introduction

(2) $\mathcal{K}(n)$, the graph algebra

3 Linear automorphism group on an *-algebra

• Structure constants, orbits and central elements

(4) The \mathcal{K}^{∞} algebra

*-Algebra and states

Consider \mathcal{A} an associative algebra with unit over the complex field \mathbb{C} , its neutral element will be noted *e*.

- We call *involution* within A, a bijection x → x^{*} which is additive, semi-linear and an involutive anti-automorphism. The pair (A, *) is called *star-Algebra*.
- $C_+(A)$ is the set of elements of the form $\sum_{i \in F} x_i x_i^*$ (where F finite). It is a real convex cone within SA(A) (set of self-adjoint elements, i.e. such that $x = x^*$).
- $State(\mathcal{A})$ is the set of linear forms $f \in \mathcal{A}^*$, the dual of \mathcal{A} , such that

$$z \in \mathcal{C}_+(\mathcal{A}) \Longrightarrow f(z) \ge 0$$
 and $f(1) = 1$, (6)

where 1 is the constant function on \mathcal{A} .

• A semi-positive non degenerate state (SPS) $f \in State(A)$ satisfies

$$z \in \mathbb{C}_+(\mathcal{A}) ext{ and } f(z) = 0 \Longrightarrow z = 0.$$
 (7)

We also call a SPS, a faithful state.

${\mathcal A}$ an *-algebra and Hilbert space

Notable facts:

- We start with a finite dimensional *-algebra A and remark that e^* is neutral so that $e^* = e$.
- **2** Now, \mathcal{A} is equipped with a SPS φ as in (7). With φ , we build the following 2-form

$$g(x,y) = \langle x | y \rangle = \varphi(x^*y) \tag{8}$$

which satisfies

$$\langle ax|y\rangle = \langle x|a^*y\rangle \tag{9}$$

- One checks (see below) at once that (x, y) → ⟨x|y⟩ a positive definite hermitian form (inner product) therefore (A, g) is an Hilbert space. We have |⟨x|y⟩| ≤ ||x|| ||y|| and φ(x*) = φ(x).

Proofs

Proof of 2 and 3.– Linearity on the right is straightforward. To show hermitian symmetry, we first compute g(x + y, x + y) = g(x, x) + [g(x, y) + g(y, x)] + g(y, y) which proves that

$$\Im(g(y,x)) = -\Im(g(x,y)). \tag{10}$$

Then, from,

$$g(x + iy, x + iy) = g(x, x) + [g(x, iy) + g(iy, x)] + g(iy, iy) = g(x, x) + i[g(x, y) - g(y, x)] + g(y, y)$$
(11)

we get $i[g(x, y) - g(y, x)] \in \mathbb{R}$ meaning $\Re([g(x, y) - g(y, x)]) = 0$. Then $\Re(g(y, x)) = \Re(g(x, y))$ with (10) shows

$$g(y,x) = \overline{g(x,y)} \tag{12}$$

therefore, with y = e, we get $\varphi(x^*) = g(x, e) = \overline{g(e, x)} = \overline{\varphi(x)}$. The inequality $|g(x, y)| \le ||x|| \cdot ||y||$ is a consequence of Cauchy-Schwartz theorem.

Linear automorphism group on ${\mathcal A}$

• Consider a finite group $H \subset \operatorname{Aut}_{\mathbb{C}}(\mathcal{A})$ of linear automorphisms of the *-algebra \mathcal{A} i.e. automorphisms of algebra which commute with the *-involution

$$\begin{array}{l} \forall (h,a) \in H \times \mathcal{A}, \quad h.(a+b) = h.a+h.b \\ \forall (h,a,b) \in H \times \mathcal{A} \times \mathcal{A}, \quad h.(ab) = (h.a)(h.b) \\ \forall (h,a,\lambda) \in H \times \mathcal{A} \times \mathbb{C}, \quad h.(\lambda a) = \lambda h.a \\ \forall (h,a) \in H \times \mathcal{A}, \quad (h.a)^* = h.a^* \end{array}$$
(13)

• φ is called *H*-invariant if

$$\forall (h,a) \in H \times \mathcal{A}, \qquad \varphi(h.a) = \varphi(a) \tag{14}$$

In other words, φ does not see the action of *H*.

Linear automorphism group on ${\mathcal A}$

Let φ be a *H*-invariant SPS on \mathcal{A} a *-algebra

• *H* is a group of isometries for $g(x, y) = \langle x | y \rangle$:

Onsider the elements H.a := ∑_{h∈H} h.a. Form the vector space κ(H, A) made of orbits (with multiplicities) linearly generated by the vectors H.a, for all a ∈ A:

$$\kappa(H,\mathcal{A}) = \operatorname{Span}_{\mathbb{C}} \{H.a\}_{a \in \mathcal{A}}$$
(16)

then $\kappa(H, A)$ is a subalgebra of A which is, moreover *-closed.

If $\mathcal{A} = \mathbb{C}(S_n)^{\otimes d}$, $\kappa(H, \mathcal{A}) = \mathcal{K}(n)$ the algebra of ribbon graphs, for a particular φ and H (will prove this in the next section).

 $\kappa(H, \mathcal{A})$ is an *-algebra

Proof of 2.– We check that the product of vectors stays in $\kappa(H, A)$

$$(H.a)(H.b) = \sum_{h,g\in H} (h.a)(g.b) = \sum_{h,g\in H} h.\left((a)(h^{-1}g.b)\right)$$
$$= \sum_{w\in H^{-1}g} \sum_{h\in H} h.\left(\sum_{w\in H} a(w.b)\right) = \sum_{w\in H} H.(a(w.b))$$
(17)

Moreover, $h.a^* = (h.a)^*$ implies $(H.a)^* = H.a^*$, so $\kappa(H, A)$ is *-closed.

What if $\mathcal{A} C^*$ -algebra ?

Remark.- (i) The reader should be aware that (\mathcal{A}, g) is not necessarily a C^{*}-algebra¹. In fact, one has the following equivalent conditions:

- (\mathcal{A}, g) is a C*-algebra (i.e. for $||x|| = \sqrt{g(x, x)}$)
- $\dim_{\mathbb{C}}(\mathcal{A}) = 1$

Elementary proof of (i).– A finite dimensional C*-algebra A is a (finite) direct sum of blocks which are \mathbb{C} -algebras of matrices i.e.

$$\mathcal{A} = \oplus_{i=1}^{m} \mathcal{M}(n_i, \mathbb{C})$$
(18)

(see, e.g. [?] Theorem III.1.1). The block, being simple algebras, are therefore two-sided ideals. Hence, decomposing 1_A according to (18) yields

$$1_{\mathcal{A}} = \sum_{i=1}^{m} e_i \tag{19}$$

if we had m > 1, this would entail that e_1 and $e'_2 = \sum_{i=2}^m e_i$ be two non-zero orthogonal projectors (orthogonality is proved by means of (9)). Hence, from $||e_1|| = ||e_1 + e'_2|| = ||e_1 - e'_2|| = 1$ we see that m = 1 and $n_1 = 1$.

¹See discussion in https://math.stackexchange.com/questions/3964927.

(ii) However, we can make \mathcal{A} a C*-algebra for the sup norm $||a||_g = \sup_{||\xi||=1} ||a.\xi||$.

• If A is a C*-algebra then $\kappa(H, A)$ is a C*-algebra. Proof: This is the consequence of the general fact that an *-closed subalgebra of a C*-algebra is a C*-algebra. [Bourbaki Ch 8]

Structure constants, Orbits

• Any basis vector of $\kappa(H, A)$ expands as

$$H.a := \sum_{h \in H} h.a = |\operatorname{Aut}(a)| \sum_{a' \in \operatorname{Orb}(a)} a'$$
(20)

where $Aut(a) = \{h|h.a = a\} \subset H$ is the automorphism subgroup of H that leaves a invariant.

• Orbit-stablizer theorem, we know that $|\operatorname{Aut}(a)| = |H|/|\operatorname{Orb}(a)|$. Also $\forall b \in \operatorname{Orb}(a)$, $\operatorname{Aut}(a) \equiv \operatorname{Aut}(b)$, thus $|\operatorname{Aut}(a)|$ is independent of the representative element in the orbit.

Structure constants. We introduce the following elements:

$$E_a = \frac{1}{|H|} \sum_{h \in H} h.a = \frac{1}{|\operatorname{Orb}(a)|} \sum_{a' \in \operatorname{Orb}(a)} a'$$
(21)

and inspect the structure constants

$$E_a E_b = \sum_c C^c_{ab} E_c \,. \tag{22}$$

We want a expansion of C_{ab}^{c} in terms of orbits of the group action.

Structure constants and central elements

$$\begin{aligned} E_{a}E_{b} &= \frac{1}{|H|^{2}} \sum_{g \in H} \sum_{h \in H} (g.a)(h.b) = \frac{1}{|H|^{2}} \sum_{g \in H} \sum_{h \in H} g.(a(g^{-1}h.b)) \\ &= \frac{1}{|H|^{2}} \sum_{g \in H} \sum_{h \in H} g.(a(h.b)) \qquad (g^{-1}h \to h) \\ &= \frac{1}{|\operatorname{Orb}(b)|} \frac{1}{|H|} \sum_{b' \in \operatorname{Orb}(b)} \frac{|H|}{|\operatorname{Orb}(a.b')|} \sum_{d \in \operatorname{Orb}(a.b')} d \\ &= \frac{1}{|\operatorname{Orb}(b)|} \sum_{b' \in \operatorname{Orb}(b)} \sum_{c} \frac{1}{|\operatorname{Orb}(a.b')|} \delta(\operatorname{Orb}(c), \operatorname{Orb}(a.b')) \sum_{d \in \operatorname{Orb}(a.b')} d \\ &= \frac{1}{|\operatorname{Orb}(b)|} \sum_{c} \frac{1}{|\operatorname{Orb}(c)|} \cdot \sum_{d \in \operatorname{Orb}(c)} d \sum_{b' \in \operatorname{Orb}(b)} \delta(\operatorname{Orb}(c), \operatorname{Orb}(a.b'))) \\ &= \frac{1}{|\operatorname{Orb}(b)|} \sum_{c} E_{c} \Big(\sum_{b' \in \operatorname{Orb}(b)} \delta(\operatorname{Orb}(c), \operatorname{Orb}(a.b')) \Big) \end{aligned}$$
(23)

where $\delta(\operatorname{Orb}(p), \operatorname{Orb}(q))$ is the Kronecker delta on orbits. Thus $C_{ab}^{c} = \frac{1}{|\operatorname{Orb}(b)|} \sum_{b' \in \operatorname{Orb}(b)} \delta(\operatorname{Orb}(c), \operatorname{Orb}(a.b'))$ with

 $\sum_{b' \in \operatorname{Orb}(b)} \delta(\operatorname{Orb}(c), \operatorname{Orb}(a.b')) =$

Number of times the right multiplication of elements in the orbit b with a fixed element in the orbit a (to the left) produces an element in orbit c.

Structure constants and central elements

There exist particular elements in \mathcal{A} such that

$$T_a = |\operatorname{Orb}(a)|E_a \tag{25}$$

For these elements, we have

$$T_a E_b = |\operatorname{Orb}(a)| \sum_c C_{ab}^c E_c = \sum_c (\mathcal{M}_a)_b^c E_c$$
(26)

The following statement is straightforward.

Proposition

Then, for any $a \in \kappa(H, A)$, the matrix elements $(\mathcal{M}_a)_b^c$ are non negative integers.

Question: Are there some T_a that generate the center of $\kappa(H, A)$?

\mathcal{A} a group algebra

In the case that $\mathcal{A} = \mathbb{C}(\mathcal{G})$,

→ Consider \mathcal{G} a finite group, and $\mathcal{A} = \mathbb{C}(\mathcal{G})$ its group algebra. → Case of interest $\mathcal{A} = \mathbb{C}(\mathcal{G})^{\otimes d} \simeq \mathbb{C}(\mathcal{G}^{\times d})$ is an algebra. We write for simplicity $\mathcal{G} = \mathcal{G}^{\times d}$.

 \bullet *-involution on ${\cal A}$

$$X^* = \sum_{g \in \mathcal{G}} \bar{a}_g g^{-1}, \qquad (27)$$

• PSP φ : Given $X = \sum_{g \in \mathcal{G}} a_g g \in \mathcal{A}, \ \varphi : \mathcal{A} \to \mathbb{C}$ $\varphi(X) := a_e, \text{ pick the coeff of the identity}$ $X^* X \in \mathcal{C}(\mathcal{A}), \qquad \varphi(X^* X) = \sum_{g \in \mathcal{G}} \sum_{h \in \mathcal{G}} \bar{a}_g a_h \varphi(g^{-1}h)$ (28)

pick all coefficients such that $[e = g^{-1}h] \Rightarrow (g = h)$. Thus $\varphi(X^*X) = \sum_{g=h} |a_h|^2 \ge 0$.

• $(\mathcal{A}, *)$ is a *-algebra that is semi-simple. Semi-simplicity feature is mainly the Maschke theorem (let G be a finite group and k a field whose characteristic does not divide the order of G. Then k[G], the group algebra of G, is semisimple).

${\mathcal A}$ a group algebra

• δ is the Kronecker delta function on \mathcal{G} ($\delta(g) = 1$ if and only if g = e, otherwise $\delta(g) = 0$).

 \bullet A sesquilinear form on ${\cal A}$ as

$$\left\langle \sum_{g \in \mathcal{G}} a_g g, \sum_{h \in \mathcal{G}} a_h h \right\rangle = \sum_{g,h \in \mathcal{G}} \bar{a}_g a_h \, \delta(g^{-1}h) \tag{29}$$

Proposition

For any $X, Y \in \mathcal{A}$,

$$\langle X, Y \rangle = \varphi(X^*Y)$$
 (30)

Proof : $\varphi(g) = \delta(g)$, for all $g \in \mathcal{G}$.

Linear automorphism group of ${\cal A}$

• *H* the subgroup of \mathcal{G} , defined by the adjoint action: $\forall (h,g) \in H \times \mathcal{G}$

$$g \mapsto hgh^{-1}$$
 (31)

 \bullet The action of H on ${\mathcal A}$ extends by linearity on ${\mathcal A}$

$$h.X = \sum_{g \in \mathcal{G}} a_g hgh^{-1}.$$
(32)

• *H* commutes with the *-involution: $(h.X)^* = hX^*$.

Proposition

$$\forall (h, X) \in H \times A, \qquad \varphi(h.X) = \varphi(X).$$

Proof: Consider a couple $(h, X) \in H \times A$

$$\varphi(h.X) = \sum_{g \in \mathcal{G}} a_g \,\varphi(hgh^{-1}) = \sum_{g \in \mathcal{G} \mid hgh^{-1} = e} a_g = a_e = \varphi(X) \tag{33}$$

- *H* is an isometry group of A.
- $\kappa(H, A)$ is a *-sublagebra of A.
- The restriction $\varphi|_{\kappa(H,\mathcal{A})}$ is a SPS for $\kappa(H,\mathcal{A})$ and thereby proves that $\kappa(H,\mathcal{A})$ is semi-simple.
- The inner product of \mathcal{A} should restrict on $\kappa(H,\mathcal{A})$

T_a operators

• Special base elements

$$T_a = \sum_{g \in \mathcal{C}_a} g$$
 (34)

where C_a is a particular conjugacy class. The label 'a' here is yet to be determine.

• A sufficient number of these elements generates the center of $\kappa(H, A)$.

• In the case: $G = S_n$: $\rightarrow C_a = \text{conjugacy class with 1 cycle of size } a \text{ and all remaining cycles of size 1.}$ n = 3, $C_2 = \{(12)(3); (13)(2); (23)(1)\}.$

 \rightarrow *T*_{*a*}'s commute with each other

$$T_a T_b = T_b T_a \tag{35}$$

for a few number of T'_a s, a = 2, 3, ..., n - 1, $\{T_a\}$ generates the center of $\mathbb{C}(S_n)$.

Outline

Introduction

- (2) $\mathcal{K}(n)$, the graph algebra
- Linear automorphism group on an *-algebra
 Structure constants, orbits and central elements

(4) The \mathcal{K}^{∞} algebra

\mathcal{K}^{∞} algebra

• An infinite dimensional associative algebra obtained by summing $\mathcal{K}(n)$ over n

$$\mathcal{K}^{\infty} = \bigoplus_{n=0}^{\infty} \mathcal{K}(n) \tag{36}$$

- Two associative products on this vector space.
- The product at fixed *n*: \mathcal{K}^{∞} is an associative semi-simple algebra?
- Outer product on \mathcal{K}^{∞} :

$$\begin{split} E_{(\overline{\sigma}_{1},\overline{\sigma}_{2})} &= \sum_{\gamma_{1}\in S_{n_{1}}} \gamma_{1}\sigma_{1}\gamma_{1}^{-1} \otimes \gamma_{1}\sigma_{2}\gamma_{1}^{-1} \in \mathcal{K}(n_{1}) \\ E_{(\overline{\tau}_{1},\overline{\tau}_{2})} &= \sum_{\gamma_{2}\in S_{n_{2}}} \gamma_{2}\tau_{1}\gamma_{2}^{-1} \otimes \gamma_{2}\tau_{2}\gamma_{2}^{-1} \in \mathcal{K}(n_{2}) \\ \circ: \mathcal{K}(n_{1}) \otimes \mathcal{K}(n_{2}) \to \mathcal{K}(n_{1}+n_{2}) \\ E_{(\overline{\sigma}_{1},\overline{\sigma}_{2})} \circ E_{(\overline{\tau}_{1},\overline{\tau}_{2})} &= \sum_{\gamma\in S_{n_{1}+n_{2}}} \gamma(\overline{\sigma}_{1}\circ\overline{\tau}_{1})\gamma^{-1} \otimes \gamma(\overline{\sigma}_{2}\circ\overline{\tau}_{2})\gamma^{-1} = E_{(\overline{\sigma}_{1}\circ\overline{\tau}_{1}),(\overline{\sigma}_{2}\circ\overline{\tau}_{2})} \end{split}$$
(37)

This outer product is related to the ring structure which has been described in detail, using the representation basis in [de Mello Koch et al, arXiv:1707.01455 [hep-th]].

• More products, co-product and Hopf algebra structure?